metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Karen J. Nordell,^a* Khadine A. Higgins^a and Mark D. Smith^b

^aDepartment of Chemistry, Lawrence University, Appleton, Wisconsin 54912, USA, and ^bDepartment of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail: karen.nordell@lawrence.edu

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.027 wR factor = 0.062 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[[bis(4,4'-bipyridine)bis(μ-oxalato)trizinc(II)]-di-μ-4,4'-bipyridine-μ-oxalato]

The hydrothermally prepared title compound, $[Zn_3-(C_{10}H_8N_2)_4(C_2O_4)_3]$, isostructural with the Fe analog, consists of undulating chains of oxalate-bridged Zn centers linked into infinite two-dimensional layers by bridging 4,4'-bipyridine ligands. An additional 4,4'-bipyridine ligand is coordinated to two of the three inequivalent Zn centers as a terminal ligand.

Received 31 January 2003 Accepted 13 February 2003 Online 21 February 2003

Comment

The title compound, (I), is isostructural with a previously reported iron analog (Zheng *et al.*, 1999). Three crystallographically inequivalent octahedral Zn^{2+} centers are linked into undulating chains along [010] by three inequivalent bridging oxalate groups. The chain subunits are further linked into infinite two-dimensional layers by two of the four crystallographically independent 4,4'-bipyridine ligands. Two additional 4,4'-bipyridine ligands coordinate to Zn1 and Zn3 in a terminal mode (Fig. 1), creating a 'self-interdigitating' layered network. The layers stack along [101].

The Zn–O distances [range 2.060 (1)–2.091 (1) Å; Table 1] and Zn–N distances [range 2.150 (2)–2.337 (2) Å; Table 1] are consistent with the reported Fe–O distances, and in good agreement with those in the related zinc–oxalato–4,4'-bi-pyridine layered polymer [Zn(ox)(bipy)] (Lu *et al.*, 1999).

Experimental

The title compound was prepared by hydrothermal reaction of $Zn(NO_3)_2$.6H₂O (0.576 g, 0.2 mmol) with 4,4'-bipyridine (0.0160 g, 0.1 mmol) and oxalic acid (0.0124 g, 0.1 mmol) in water (0.80 ml) in an evacuated sealed Pyrex tube. The reaction was heated to 418 K at 10 K min⁻¹ and held at that temperature for 48 h before cooling slowly (0.2 K min⁻¹) to 298 K. The reaction yielded a plentiful supply of yellow crystals.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

 $\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

View of (I), with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms with suffix 'a' are symmetry generated; see Table 1 for details.

A single layer of (I), showing the undulating chains of oxalato-bridged Zn atoms and terminal and bridging 4,4'-bipyridine ligands.

Crystal data

$[Zn_3(C_{10}H_8N_2)_4(C_2O_4)_3]$	$D_x = 1.741 \text{ Mg m}^{-3}$
$M_r = 1084.91$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 9955
a = 16.2513 (9) Å	reflections
b = 15.5891 (9)Å	$\theta = 2.6 - 26.4^{\circ}$
c = 16.376(1) Å	$\mu = 1.81 \text{ mm}^{-1}$
$\beta = 94.000 \ (1)^{\circ}$	T = 293 (2) K
$V = 4138.6 (4) \text{ Å}^3$	Bar, yellow
Z = 4	$0.42 \times 0.40 \times 0.22 \text{ mm}$

Data collection

622 parameters

Bruker SMART APEX CCD area- detector diffractometer	8443 independent reflections 6454 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.034$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Bruker, 1999)	$h = -14 \rightarrow 20$
$T_{\min} = 0.415, \ T_{\max} = 0.594$	$k = -18 \rightarrow 19$
32100 measured reflections	$l = -20 \rightarrow 20$
Refinement	
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.027$	$w = 1/[\sigma^2(F_o^2) + (0.0256P)^2]$
$wR(F^2) = 0.062$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.002$
8443 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$

 Table 1

 Selected geometric parameters (Å).

0	• • • •		
Zn1-O2	2.0630 (13)	Zn2-O5	2.0880 (14)
Zn1-O1	2.0668 (13)	Zn2-N3	2.2152 (15)
$Zn1-O12^{i}$	2.0749 (14)	Zn2-N5	2.2419 (15)
Zn1-O11 ⁱ	2.0806 (14)	Zn3-O7	2.0601 (13)
Zn1-N6 ⁱⁱ	2.1601 (15)	Zn3-O8	2.0800 (13)
Zn1-N1	2.3370 (16)	Zn3-O10	2.0886 (14)
Zn2-O3	2.0733 (13)	Zn3-O9	2.0910 (14)
Zn2-O6	2.0782 (13)	Zn3-N4 ⁱⁱⁱ	2.1497 (15)
Zn2-O4	2.0866 (14)	Zn3-N7	2.2669 (16)

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y - \frac{1}{2}, \frac{3}{2} - z$; (iii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$.

H atoms were geometrically idealized, with C–H = 0.93 Å and $U_{iso}(H) = 1.2U_{iso}(C)$.

Data collection: *SMART-NT* (Bruker, 1999); cell refinement: *SAINT-Plus-NT* (Bruker, 1999); data reduction: *SAINT-Plus-NT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Funding was provided by Lawrence University and by the National Science Foundation through grant DMR:9873570.

References

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SMART-NT (Version 5.624), SAINT-Plus-NT (Version 6.02a) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lu, J. Y., Lawandy, M. A., Li, J., Yuen, T. & Lin, C. L. (1999). *Inorg. Chem.* 38, 2695–2704.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zheng, L.-M., Fang, X., Lii, K.-H., Song, H.-H, Xin, X.-Q., Fun, H.-K, Chinnakali, K. & Razak, I. A. (1999). *J. Chem. Soc. Dalton Trans.* pp. 2311– 2316.