Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Karen J. Nordell, ${ }^{\text {a* }}$ Khadine A. Higgins ${ }^{\text {a }}$ and Mark D. Smith ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Lawrence University, Appleton, Wisconsin 54912, USA, and
${ }^{\text {b }}$ Department of Chemistry and Biochemistry,
University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail:
karen.nordell@lawrence.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.027$
$w R$ factor $=0.062$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[bis(4,4'-bipyridine)bis(μ-oxalato)-trizinc(II)]-di- μ-4,4'-bipyridine- μ-oxalato]

Abstract

The hydrothermally prepared title compound, $\left[\mathrm{Zn}_{3}-\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$, isostructural with the Fe analog, consists of undulating chains of oxalate-bridged Zn centers linked into infinite two-dimensional layers by bridging 4,4'-bipyridine ligands. An additional $4,4^{\prime}$-bipyridine ligand is coordinated to two of the three inequivalent Zn centers as a terminal ligand.

Comment

The title compound, (I), is isostructural with a previously reported iron analog (Zheng et al., 1999). Three crystallographically inequivalent octahedral Zn^{2+} centers are linked into undulating chains along [010] by three inequivalent bridging oxalate groups. The chain subunits are further linked into infinite two-dimensional layers by two of the four crystallographically independent $4,4^{\prime}$-bipyridine ligands. Two additional 4,4'-bipyridine ligands coordinate to Zn 1 and Zn 3 in a terminal mode (Fig. 1), creating a 'self-interdigitating' layered network. The layers stack along [101].

(I)

The $\mathrm{Zn}-\mathrm{O}$ distances [range 2.060 (1)-2.091 (1) Å; Table 1] and $\mathrm{Zn}-\mathrm{N}$ distances [range 2.150 (2)-2.337 (2) Å; Table 1] are consistent with the reported $\mathrm{Fe}-\mathrm{O}$ distances, and in good agreement with those in the related zinc-oxalato-4, 4^{\prime}-bipyridine layered polymer $[\mathrm{Zn}(\mathrm{ox})(\mathrm{bipy})]$ (Lu et al., 1999).

Experimental

The title compound was prepared by hydrothermal reaction of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.576 \mathrm{~g}, 0.2 \mathrm{mmol})$ with $4,4^{\prime}$-bipyridine $(0.0160 \mathrm{~g}$, $0.1 \mathrm{mmol})$ and oxalic acid $(0.0124 \mathrm{~g}, 0.1 \mathrm{mmol})$ in water $(0.80 \mathrm{ml})$ in an evacuated sealed Pyrex tube. The reaction was heated to 418 K at $10 \mathrm{~K} \mathrm{~min}^{-1}$ and held at that temperature for 48 h before cooling slowly ($0.2 \mathrm{~K} \mathrm{~min}^{-1}$) to 298 K . The reaction yielded a plentiful supply of yellow crystals.

Received 31 January 2003 Accepted 13 February 2003 Online 21 February 2003

Figure 1
View of (I), with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms with suffix 'a' are symmetry generated; see Table 1 for details.

Figure 2
A single layer of (I), showing the undulating chains of oxalato-bridged Zn atoms and terminal and bridging $4,4^{\prime}$-bipyridine ligands.

Crystal data

$\left[\mathrm{Zn}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$	$D_{x}=1.741 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1084.91$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 9955
$a=16.2513(9) \AA$	\quad reflections
$b=15.5891(9) \AA$	$\mu=2.6-26.4^{\circ} \AA$
$c=16.376(1) \AA$	$T=2.81 \mathrm{~mm}^{-1}$
$\beta=94.000(1)^{\circ}$	Bar, yellow
$V=4138.6(4) \AA^{3}$	$0.42 \times 0.40 \times 0.22 \mathrm{~mm}$
$Z=4$	

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.415, T_{\text {max }}=0.594$
32100 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.062$
$S=1.03$
8443 reflections
622 parameters

8443 independent reflections
6454 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-14 \rightarrow 20$
$k=-18 \rightarrow 19$
$l=-20 \rightarrow 20$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0256 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{\AA_{\circ}^{-3}}$
$\Delta \rho_{\max }=0.4 .37 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters (\AA).

Zn1-O2	$2.0630(13)$	Zn2-O5	$2.0880(14)$
Zn1-O1	$2.0668(13)$	Zn2-N3	$2.2152(15)$
Zn1-O12	$2.0749(14)$	Zn2-N5	$2.2419(15)$
Zn1-O11	$2.0806(14)$	Zn3-O7	$2.0601(13)$
Zn1-N6	$2.1601(15)$	Zn3-O8	$2.0800(13)$
Zn1-N1	$2.3370(16)$	Zn3-O10	$2.0886(14)$
Zn2-O3	$2.0733(13)$	Zn3-O9	$2.0910(14)$
Zn2-O6	$2.0782(13)$	Zn3-N4	iii

Symmetry codes: (i) $x, y-1, z$; (ii) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

H atoms were geometrically idealized, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {iso }}(\mathrm{C})$.

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT-Plus-NT (Bruker, 1999); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Funding was provided by Lawrence University and by the National Science Foundation through grant DMR:9873570.

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SMART-NT (Version 5.624), SAINT-Plus-NT (Version 6.02a) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Lu, J. Y., Lawandy, M. A., Li, J., Yuen, T. \& Lin, C. L. (1999). Inorg. Chem. 38, 2695-2704.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zheng, L.-M., Fang, X., Lii, K.-H., Song, H.-H, Xin, X.-Q., Fun, H.-K, Chinnakali, K. \& Razak, I. A. (1999). J. Chem. Soc. Dalton Trans. pp. 23112316.

